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Abstract

Let F be a p-adic field of characteristic zero. We determine the composition

series of the induced representations of SO(5, F ).

1 Introduction

In this paper we investigate composition series of the parabolicaly induced

representations of the split connected group SO(5, F ), where F is a p-adic

field of characteristic zero, and determine the set ˜SO(5, F ) of equivalence

classes of irreducible representations of SO(5, F ) (modulo cuspidal repre-

sentations). It is of interest to know whether the induced representation

reduces or not, and to derive its composition series if it reduces. Simi-

lar examples of admissible duals of some other low - rank groups can be

found in [3], [7] and [9]. In the paper [6] we determine the unitary dual

of SO(5, F ).

In the next section we establish notation and review some standard

facts from the representation theory of SO(5, F ). In the third section our

main results are stated and proved. We determine composition series of

the representations supported in the minimal parabolic subgroup, using

rather new and powerful intertwining operator methods ([7], [8], [10]),

combined with the method of Jacquet modules ([4], [13], [14]). In the

last section we obtain the reducibility points of the representations with
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cuspidal support in the maximal parabolic subgroups. These reducibility

points follow directly from the results of F. Shahidi, who has described

reducibility in terms of L−functions ([10, 11]).

We are thankful to Goran Muić for suggesting the problem and to

Marcela Hanzer for many useful conversations and a number of useful

suggestions regarding the exposition in the paper.

2 Preliminaries

Let G be the F -points of a reductive group defined over F , where F is a

p-adic field of characteristic zero. We denote by R(G) the Grothendieck

group of the category of admissible representations of finite length of

G. In computations we write shortly σ for the semi-simplification of an

admissible representation of finite length σ of G.

The odd special orthogonal group SO(2n + 1, F ) is the group

SO(2n + 1, F ) = {g ∈ SL(2n + 1, F ) : τgg = I2n+1}

where τg denotes the transposed matrix of g with respect to the second

diagonal. Let R(S) =
⊕

n≥0 R(SO(2n + 1, F )).

The character |det(g)|F of GL(n, F ), where | |F is the modulus of F ,

is denoted by ν. Set R =
⊕

n≥0 R(GL(n, F )). If π is a representa-

tion of GL(n, F ) and 0 ≤ k ≤ n, the normalized Jacquet module of

π with respect to the standard parabolic subgroup which Levi factor is

GL(k, F ) × GL(n − k, F ) is denoted by r(k)(π). For π ∈ R(GL(n, F )),

define m∗(π) =
∑n

k=1 r(k)(π) (the sum of all semi-simplifications). Obvi-

ously, one may consider m∗(π) ∈ R ⊗ R. If π1 is an admissible represen-

tation of GL(k, F ) and π2 an admissible representation of GL(n− k, F ),

we write π1 × π2 for the representation of GL(n, F ) that is parabolically

induced from π1 ⊗ π2.

We fix a minimal parabolic subgroup Pmin of SO(2n+1, F ) consisting

of all upper triangular matrices in the group. A standard parabolic sub-

group P of SO(2n+1, F ) is a parabolic subgroup of SO(2n+1, F ) contain-

ing Pmin. Every standard parabolic subgroup has Levi factor isomorphic

to GL(n1, F )×· · ·GL(nk, F )×SO(2(n−|α|)+1), where α = (n1, . . . , nk)

is a sequence of the positive integers with
∑k

i=1 ni = |α|, |α| ≤ n. We de-

note such parabolic subgroups by Pα and their Levi factors by Mα (recall
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that Pα = MαNα is a Levi decomposition of Pα, where Nα denotes the

unipotent radical).

Suppose that π1, . . . , πk are the representations of GL(n1, F ), . . . , GL(nk, F )

and σ a representation of SO(2(n −m) + 1, F ). Then we consider π1 ⊗
· · · ⊗ πk ⊗ σ as a representation of Mα, where α = (n1, . . . , nk). Fol-

lowing [13], normalized induction is written as π1 × · · · × πk o σ =

Ind
GL(n,F )
Pα

(π1 ⊗ · · · ⊗ πk ⊗ σ).

If σ is a representation of SO(2n+1, F ), the normalized Jacquet mod-

ule of σ with respect to Pα is denoted by sα(σ). In this way we get a

group homomorphism R(SO(2n + 1, F )) → R(Mα). In a similar way as

before, for a smooth representation σ of SO(2n + 1, F ) of finite length,

set µ∗(σ) =
∑n

k=0 s(k)(σ). We can consider µ∗(σ) ∈ R ⊗ R(S). Then

Frobenius reciprocity in this setting tells:

HomSO(2n+1,F )(π, π1 × · · · × πk o σ) ' HomMα(sα(π), π1 ⊗ · · · ⊗ πk ⊗ σ)

If σ is a representation of SO(5, F ), the normalized Jacquet module

sα(σ) is denoted by smin(σ) if α = (1, 1) (minimal parabolic subgroup,

Pmin), by sSieg(σ) if α = (2) (Siegel parabolic subgroup, PSieg) or by

s(1)(σ) if α = (1) (Heisenberg parabolic subgroup, P(1)).

Let πi be representations of GL(ni, F ), 1 ≤ i ≤ 2, and σ a repre-

sentation of SO(2n + 1, F ). We shortly recall some well-known proper-

ties that are helpful while working with Jacquet modules of the induced

representations and determining their composition series ( ˜ denotes

contragredient):

• Representations π1×π2 and π2×π1 have the same composition series.

Also, if π1 × π2 is irreducible, then π1 × π2 ' π2 × π1.

• π̃1 × π2 ' π̃1 × π̃2.

• Representations π o σ and π̃ o σ have the same composition series

and π̃ o σ ' π̃ o σ̃.

For an admissible representation π of a reductive group G, Aubert dual

of π is denoted by π̂. We list some basic properties ([1], Théorème 1.7.):

(a) If π is irreducible cuspidal representation, then π̂ = π,

(b) ̂̂π = π,

(c) π̂1 × π2 = π̂1 × π̂2 and smin(π̂) = Ad(w) ̂smin(π), where w is the

longest element of Weyl group of G.
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We take a momment to recall Langlands classification for odd special

orthogonal groups. For each irreducible essentially square integrable rep-

resentation δ of GL(n, F ) there is an e(δ) ∈ R such that δ = νe(δ)δu,

where δu is unitarizable. We use the letter D to denote the set of equiv-

alence classes of all irreducible essentially square integrable representa-

tions of GL(n, F ), n ≥ 1. Let D+ = {δ ∈ D : e(δ) > 0}. Further, let

δ1, . . . , δk ∈ D+ such that e(δ1) ≥ e(δ2) ≥ · · · ≥ e(δk) and σ an irreducible

tempered representation of SO(2n + 1, F ), n ∈ N. Then the representa-

tion δ1 × δ2 × · · · × δk o σ has an unique irreducible quotient, which we

denote by L(δ1, δ2, . . . , δk, σ).

The following version of Casselmans square-integrability criterion is

frequently used:

Let π be an admissible irreducible representation of SO(2n+1, F ) and let

Pα be any standard parabolic subgroup minimal with respect to the prop-

erty that sα(π) 6= 0. Write α = (n1, . . . , nk) and let σ be any irreducible

subquotient of sα(π). Then we can write σ = ρ1 ⊗ ρ2 ⊗ · · · ⊗ ρk ⊗ ρ.

If all of the following inequalities:

n1e(ρ1) > 0,

n1e(ρ1) + n2e(ρ2) > 0,
...

n1e(ρ1) + n2e(ρ2) + · · ·+ nke(ρk) > 0

hold for every α and σ as above, then π is a square integrable represen-

tation.

Also, if π is a square integrable representation, then all of given in-

equalities hold for any α and σ as above. The criterion for tempered

representations is given by replacing every inequality above with ≥.

With Spin(2n + 1, F ) we denote a simply - connected double covering

of SO(2n + 1, F ) as algebraic groups (for details see [12]) and let f :

Spin(2n + 1, F ) ³ SO(2n + 1, F ) be the central isogeny. In the exact

sequence

1 → {±1} ↪→ Spin(2n + 1, F )
f−→ SO(2n + 1, F )

δ−→ F×/(F×)2

homomorphism δ is called spinor norm. Spinor norm δ enables us to view

every character of F×/(F×)2 (i.e., every quadratic character of F×) as

a character of SO(2n + 1, F ). So, for the quadratic character ζ of F×,
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να1ζ × να2ζ o 1 ∼= ζ(να1 × να2 o 1). Observe that, for n = 1, f gives an

isomorphism between SO(3, F ) and PGL(2, F ).

In the same way as in [9], Chapter 2, we get the next two useful

technical results:

• Fix an admissible representation π of GL(2, F ), suppose that π is of

finite length. Let m∗(π) = 1⊗π+
∑

i π
1
i ⊗π2

i +π⊗1, where
∑

i π
1
i ⊗π2

i

is a decomposition into a sum of irreducible representations. Now

we have:

µ∗(π o σ) = 1⊗ π o σ +
∑

i

π1
i ⊗ π2

i o σ +
∑

i

π̃2
i ⊗ π1

i o σ +

+π ⊗ σ + π̃ ⊗ σ +
∑

i

π1
i × π̃2

i ⊗ σ

• Fix an admissible representation π of GL(1, F ) and an admissible

representation σ of SO(3, F ). We have:

µ∗(σ) = 1⊗ σ +
∑

i

σ1
i ⊗ σ2

i

µ∗(π o σ) = 1⊗ π o σ + π ⊗ σ + π̃ ⊗ σ +
∑

i

σ1
i ⊗ π o σ2

i +

+
∑

i

π × σ1
i ⊗ σ2

i +
∑

i

σ1
i × π̃ ⊗ σ2

i

Here and subsequently, StG and 1G denote the Steinberg and the trivial

representation of some reductive group G. Set of the unitary characters

of F× will be denoted by F̂×, while the set of not necessarily unitary

characters will be denoted by F̃×.

In the next proposition we list some well-known reducibility results.

For instance, it can be found in [14], Chapter 11.

Proposition 2.1 Let χ, χ1, χ2 and ζ ∈ F̃×, where ζ2 = 1F× (i.e., where

ζ is a quadratic character).

The representation χ1 × χ2 of GL(2, F ) reduces if and only if χ1 =

ν±1χ2. We have: ν
1
2 χ× ν−

1
2 χ = χStGL(2) + χ1GL(2).

The representation χo 1 of SO(3, F ) reduces if and only if χ2 = ν±1.

We have: ν
1
2 ζ o 1 = ζStSO(3) + ζ1SO(3).

Remark: from now on, quadratic characters will be denoted by ζ or ζi,

i ≥ 1.
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3 REPRESENTATIONS WITH SUPPORT IN MIN-

IMAL PARABOLIC SUBGROUP

First we have to determine the reducibility points of the principal series

representations. It is an result of Keys [5] that unitary principal series

for SO(2n + 1, F ) are irreducible, so we investigate non-unitary principal

series.

Decomposition of the long intertwining operator gives us almost all of

the representations whose composition series we have to determine. All

the other cases are analyzed separately. We recall basic properties:

The intertwining operator (GL(2)) χ1 × χ2 → χ2 × χ1 has a pole (of

order one) if and only if χ1 = χ2.

The intertwining operator (SO(3)) χ o 1 → χ−1 o 1 has a pole (of

order one) if and only if χ = χ−1, i.e., χ2 = 1F× .

First, in case (A), we consider non-unitary principal series that re-

duce on its GL(2)−part. After that, in case (B) we consider non-unitary

principal series that reduce on its SO(3)−part.

(A) Let χ be the unitary character of F× and s ∈ R, s > 0.

Let νsχStGL(2) o 1
A(s)−→ ν−sχ−1StGL(2) o 1 be a standard long inter-

twining operator, obtained by a meromorphic continuation of the integral

intertwining operator.

Analyzing the decomposition of the long intertwining operator A(s)

into the short intertwining operators in the commutative diagram (1), we

get for which s > 0 and unitary characters χ this intertwining operator

is not an isomorphism (observe that is and i′s are inclusions and depend
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holomorphically on s for all s):

νsχStGL(2) o 1 νs+ 1
2 χ× νs− 1

2 χo 1

νs+ 1
2 χ× ν−s+ 1

2 χ−1 o 1

ν−s+ 1
2 χ−1 × νs+ 1

2 χo 1

ν−sχ−1StGL(2) o 1 ν−s+ 1
2 χ−1 × ν−s− 1

2 χ−1 o 1

//
is

²²

A(s)

²²

A1(s)

²²

A2(s)

²²

A3(s)

//
i′s

(1)

We directly get that either A1(s), A2(s), A3(s) have poles or given repre-

sentations reduce only for s = 1
2
, χ2 = 1F× and s = 1, χ2 = 1F× .

In all other cases operators Ai(s), i = 1, 2, 3 are holomorphic and

isomorphisms, so A(s) = A3(s)A2 (s)A1(s)|νsχStGL(2)o1 is an isomorphism

and representation νsχStGL(2) o 1 is irreducible. Thus, we have proved

the following result:

Proposition 3.1 Let χ ∈ F̂×, s ∈ R, s > 0. The representations

νsχStGL(2) o 1 and νsχ1GL(2) o 1 are irreducible unless (s, χ) = (1
2
, ζ)

or (s, χ) = (1, ζ), where ζ2 = 1F×. In R(S) we have νs+ 1
2 χ× νs− 1

2 χo1 =

νsχStGL(2)o 1 + νsχ1GL(2)o 1. Also, if (s, χ) 6= (1
2
, ζ) and (s, χ) 6= (1, ζ),

then νsχStGL(2) o 1 = L(νsχStGL(2), 1) and

νsχ1GL(2) o 1 =





L(νs+ 1
2 χ, ν

1
2
−sχ−1, 1) if s < 1

2
,

L(νχ, χo 1) if s = 1
2
,

L(νs+ 1
2 χ, νs− 1

2 χ, 1) if s > 1
2
.

So, for s > 0, there are two representations whose composition series

we still have to determine: νζ × ζ o 1 and ν
3
2 ζ × ν

1
2 ζ o 1.

(B) Let χ and ζ be the unitary characters, s ∈ R, s > 0.

Let νsχ o ζStSO(3)
B(s)−→ ν−sχ−1 o ζStSO(3) be a standard long inter-

twining operator, obtained by meromorphic continuation of integral in-

tertwining operator, holomorphic for s > 0.

Analyzing the decomposition of the long intertwining operator B(s)

into the short intertwining operators in the commutative diagram (2), we

get for which s > 0 and unitary characters χ this intertwining operator
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is not an isomorphism (observe that js and j′s are inclusions and depend

holomorphically on s for all s):

νsχo ζStSO(3) νsχ× ν
1
2 ζ o 1

ν
1
2 ζ × νsχo 1

ν
1
2 ζ × ν−sχ−1 o 1

ν−sχ−1 o ζStSO(3) ν−sχ−1 × ν
1
2 ζ o 1

//
js

²²
ÂÂ
ÂÂ
ÂÂ
ÂÂ
ÂÂ
Â Â
ÂÂ
ÂÂ
ÂÂ
ÂÂ
Â Â
ÂÂ
ÂÂ
Â Â
ÂÂ
ÂÂ
ÂÂ

B(s)

²²
ÂÂ
Â Â
Â Â
ÂÂ
Â

B1(s)

²²
ÂÂ
Â Â
Â Â
ÂÂ
Â

B2(s)

²²
ÂÂ
Â Â
Â Â
ÂÂ
Â

B3(s)

//
j′s

(2)

We directly get that either B1(s), B2(s), B3(s) have poles or given repre-

sentations reduce only for s = 1
2
, χ = ζ; s = 1

2
, χ2 = 1F× and s = 3

2
, χ = ζ.

In all other cases Bi(s), i = 1, 2, 3 are holomorphic and isomorphisms,

so B(s) = B3(s)B2(s) B1(s)|νsχoζStSO(3)
is also an isomorphism and rep-

resentation νsχo ζStSO(3) is irreducible. So, the following holds:

Proposition 3.2 Let χ ∈ F̂×, s ∈ R, s > 0, ζ ∈ F̂× such that ζ2 = 1F×.

The representations νsχoζStSO(3) and νsχoζ1SO(3) are irreducible unless

(s, χ) = (3
2
, ζ) or (s, χ) = (1

2
, ζ1), where ζ2

1 = 1F×. In R(S) we have

νsχ × ν
1
2 ζ o 1 = νsχ o ζStSO(3) + νsχ o ζ1SO(3). Also, if (s, χ) 6= (3

2
, ζ)

and (s, χ) 6= (1
2
, ζ1), then νsχo ζStSO(3) = L(νsχ, ζStSO(3)) and

νsχo ζ1SO(3) =





L(ν
1
2 ζ, νsχ, 1) if 0 < s < 1

2
,

L(νsχ, ν
1
2 ζ, 1) if s ≥ 1

2
,

L(ν
1
2 ζ, χo 1) if s = 0.

So, for s > 0, there are three representations whose composition series

we still have to determine: ν
1
2 ζ×ν

1
2 ζo1, ν

3
2 ζ×ν

1
2 ζo1 and ν

1
2 ζ1×ν

1
2 ζ2o1.

All together, it remains to determine composition series of the following

four representations:

(i) ν
1
2 ζ×ν

1
2 ζo1, (ii) ν

3
2 ζ×ν

1
2 ζo1, (iii) ν

1
2 ζ1×ν

1
2 ζ2o1 and (iv) νζ×ζo1.

We summarize reducibility points of the principal series in the following
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proposition, which can be proved in the same way as in section 7 of [13]

(see Theorem 7.1. there):

Proposition 3.3 Let χ1, χ2 ∈ F̃×. The non-unitary principal series χ1×
χ2 o 1 is reducible if and only if at least one of the following conditions

hold:

(1) χ1 = ν±1χ2,

(2) χ−1
1 = ν±1χ2,

(3) χ1 = ν±
1
2 ζ1, ζ2

1 = 1F×,

(4) χ2 = ν±
1
2 ζ2, ζ2

2 = 1F×.

All of the following equations are given in semi-simplifications.

(i) First case is analyzed in full detail, writting all of the included

Jacquet modules.

ν
1
2 ζ × ν

1
2 ζ o 1 = ν

1
2 ζ × ν−

1
2 ζ o 1 = ζStGL(2) o 1 + ζ1GL(2) o 1 = ν

1
2 ζ o

ζStSO(3) + ν
1
2 ζ o ζ1SO(3)

To find common irreducible subquotients of these representations, we

first describe their Jacquet modules.

µ∗(ν
1
2 ζ o ζ1SO(3)) = 1⊗ ν

1
2 ζ o ζ1SO(3) + ν

1
2 ζ ⊗ ζ1SO(3) +

ν−
1
2 ζ ⊗ ζ1SO(3) + ν−

1
2 ζ ⊗ ν

1
2 ζ o 1 +

ν
1
2 ζ × ν−

1
2 ζ ⊗ 1 + ν−

1
2 ζ × ν−

1
2 ζ ⊗ 1

smin(ν
1
2 ζoζ1SO(3)) = 2ν−

1
2 ζ⊗ν−

1
2 ζ⊗1+ν

1
2 ζ⊗ν−

1
2 ζ⊗1+ν−

1
2 ζ⊗ν

1
2 ζ⊗1

µ∗(ν
1
2 ζ o ζStSO(3)) = 1⊗ ν

1
2 ζ o ζStSO(3) + ν

1
2 ζ ⊗ ζStSO(3) +

ν−
1
2 ζ ⊗ ζStSO(3) + ν

1
2 ζ ⊗ ν

1
2 ζ o 1 +

ν
1
2 ζ × ν

1
2 ζ ⊗ 1 + ν

1
2 ζ × ν−

1
2 ζ ⊗ 1

= 1⊗ ν
1
2 ζ o ζStSO(3) + 2ν

1
2 ζ ⊗ ζStSO(3) +

ν−
1
2 ζ ⊗ ζStSO(3) + ν

1
2 ζ ⊗ ζ1SO(3) +

ν
1
2 ζ × ν

1
2 ζ ⊗ 1 + ζStGL(2) ⊗ 1 + ζ1GL(2) ⊗ 1

smin(ν
1
2 ζo ζStSO(3)) = 2ν

1
2 ζ⊗ν

1
2 ζ⊗1+ν

1
2 ζ⊗ν−

1
2 ζ⊗1+ν−

1
2 ζ⊗ν

1
2 ζ⊗1

µ∗(ζStGL(2) o 1) = 1⊗ ζStGL(2) o 1 + ν
1
2 ζ ⊗ ν−

1
2 ζ o 1 +

ν
1
2 ζ ⊗ ν

1
2 ζ o 1 + 2ζStGL(2) ⊗ 1 + ν

1
2 ζ × ν

1
2 ζ ⊗ 1

= 1⊗ ζStGL(2) o 1 + 2ν
1
2 ζ ⊗ ζStSO(3) +

2ν
1
2 ζ ⊗ ζ1SO(3) + 2ζStGL(2) ⊗ 1 + ν

1
2 ζ × ν

1
2 ζ ⊗ 1
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smin(ζStGL(2) o 1) = 2ν
1
2 ζ ⊗ ν−

1
2 ζ ⊗ 1 + 2ν

1
2 ζ ⊗ ν

1
2 ζ ⊗ 1

µ∗(ζ1GL(2) o 1) = 1⊗ ζ1GL(2) o 1 + ν−
1
2 ζ ⊗ ν

1
2 ζ o 1 + ν−

1
2 ζ ⊗ ν

1
2 ζ o 1

+ ζ1GL(2) ⊗ 1 + ζ1GL(2) ⊗ 1 + ν−
1
2 ζ × ν−

1
2 ζ ⊗ 1

= 1⊗ ζ1GL(2) o 1 + 2ν−
1
2 ζ ⊗ ζStSO(3) +

2ν−
1
2 ζ ⊗ ζ1SO(3) + 2ζ1GL(2) ⊗ 1 + ν−

1
2 ζ × ν−

1
2 ζ ⊗ 1

smin(ζ1GL(2) o 1) = 2ν−
1
2 ζ ⊗ ν

1
2 ζ ⊗ 1 + 2ν−

1
2 ζ ⊗ ν−

1
2 ζ ⊗ 1

From Jacquet modules with respect to the minimal parabolic subgroup

we conclude that the representations ν
1
2 ζ o ζ1SO(3) and ζStGL(2)o 1 have

an irreducible subquotient in common (as in [13], Chapter 3), which is

different from both ν
1
2 ζ o ζ1SO(3) and ζStGL(2) o 1. For simplicity of

notation, let τ1 stand for this subqoutient.

We get directly: sSieg(τ1) = ζStGL(2) ⊗ 1, smin(τ1) = ν
1
2 ζ ⊗ ν−

1
2 ζ ⊗ 1.

τ1 is irreducible and tempered.

Let υ denote the irreducible subquotient which ν
1
2 ζ o ζStSO(3) and

ζ1GL(2) o 1 have in common. From Jacquet modules we obtain directly:

sSieg(υ) = ζ1GL(2) ⊗ 1, smin(υ) = ν−
1
2 ζ ⊗ ν

1
2 ζ ⊗ 1.

Because of the following inclusions, L(ν
1
2 ζ, ζStSO(3)) ↪→ ν−

1
2 ζoζStSO(3)

and ν−
1
2 ζ o ζStSO(3) ↪→ ν−

1
2 ζ × ν

1
2 ζ o 1, Frobenius reciprocity implies

smin(L(ν
1
2 ζ, ζStSO(3))) ≥ ν−

1
2 ζ ⊗ ν

1
2 ζ ⊗ 1. Multiplicity of ν−

1
2 ζ ⊗ ν

1
2 ζ ⊗ 1

in smin(ν
1
2 ζ o ζStSO(3)) is equal to 1, so υ = L(ν

1
2 ζ, ζStSO(3)).

Since ζ1GL(2)o1 ³ L(ν
1
2 ζ, ν

1
2 ζ, 1) and L(ν

1
2 ζ, ν

1
2 ζ, 1) ↪→ ν−

1
2 ζ×ν−

1
2 ζo1

we conclude that smin(L(ν
1
2 ζ, ν

1
2 ζ, 1)) ≥ ν−

1
2 ζ ⊗ ν−

1
2 ζ ⊗ 1.

Now it is obvious that L(ν
1
2 ζ, ν

1
2 , 1) ⊆ ν

1
2 ζ o ζ1SO(3) ∩ ζ1GL(2)o 1 and

sSieg(L(ν
1
2 ζ, ν

1
2 ζ, 1)) ≥ ν−

1
2 ζ × ν−

1
2 ζ ⊗ 1.

Representations ζ1GL(2)⊗1 and ζStGL(2)⊗1 are irreducible and unitary,

multiplicity of ζ1GL(2)⊗1 in sSieg(ζ1GL(2)o1) is equal to 2, which implies

that ζ1GL(2) o 1 is a representation of length 2. Now we get directly:

ζStGL(2) o 1 = τ1 +
̂

L(ν
1
2 ζ, ν

1
2 ζ, 1),

ν
1
2 ζ o ζStSO(3) = L(ν

1
2 ζ, ζStSO(3)) +

̂
L(ν

1
2 ζ, ν

1
2 ζ, 1) .

Again, from Jacquet modules we see that
̂

L(ν
1
2 ζ, ν

1
2 ζ, 1) is tempered

representation and we denote it by τ2. We summorize the above discussion

as follows:

Proposition 3.4 Let ζ ∈ F̂× such that ζ2 = 1F×. Then the represen-

tations ζ1GL(2) o 1, ζStGL(2) o 1, ν
1
2 ζ o ζ1SO(3) and ν

1
2 ζ o ζStSO(3) are

10



reducible and ν
1
2 ζ × ν

1
2 ζ o 1 is a representation of length 4. The repre-

sentations ζStGL(2) o 1 and ν
1
2 ζ o ζ1SO(3) (respectively ν

1
2 ζ o ζStSO(3))

have exactly one irreducible subquotient in common. That subquotient is

tempered, and is denoted by τ1 (respectively τ2). In R(S) we have:

ν
1
2 ζ×ν

1
2 ζo1 = ζ1GL(2)o1+ζStGL(2)o1 = ν

1
2 ζoζ1SO(3)+ν

1
2 ζoζStSO(3)

and

ζ1GL(2) o 1 = L(ν
1
2 ζ, ν

1
2 ,o1) + L(ν

1
2 ζ, ζStSO(3)),

ζStGL(2) o 1 = τ1 + τ2,

ν
1
2 ζ o ζ1SO(3) = L(ν

1
2 ζ, ν

1
2 ζ, 1) + τ1,

ν
1
2 ζ o ζStSO(3) = L(ν

1
2 ζ, ζStSO(3)) + τ2.

(ii) In this case some older results of Casselman are used. We have

already observed that ν
3
2 ζ × ν

1
2 ζ o 1 ∼= ζ(ν

3
2 × ν

1
2 o 1). Since StSO(5) ↪→

ν
3
2 × ν

1
2 o 1, [2] implies that ν

3
2 × ν

1
2 o 1 is the representation of the

length 22 = 4, so as ν
3
2 ζ × ν

1
2 ζ o 1. Irreducible subquotients of the

representation ν
3
2 ζ × ν

1
2 ζ o 1 are ζStSO(5) (which is square - integrable),

ζ1SO(5), L(νζStGL(2), 1) and L(ν
3
2 ζ, ζStSO(3)). Using Jacquet modules we

easily get the following proposition:

Proposition 3.5 Let ζ ∈ F̂× such that ζ2 = 1F×. Then the representa-

tions ν
3
2 ζ o ζ1SO(3), ν

3
2 ζ o ζStSO(3), νζ1GL(2) o 1 and νζStGL(2) o 1 are

reducible and ν
3
2 ζ × ν

1
2 ζ o 1 is a representation of length 4. In R(S) we

have:

ν
3
2 ζ×ν

1
2 ζo1 = ν

3
2 ζoζ1SO(3)+ν

3
2 ζoζStSO(3) = νζ1GL(2)o1+νζStGL(2)o1

and

ν
3
2 ζ o ζ1SO(3) = ζ1SO(5) + L(νζStGL(2), 1),

ν
3
2 ζ o ζStSO(3) = ζStSO(5) + L(ν

3
2 ζ, ζStSO(3)),

νζ1GL(2) o 1 = ζ1SO(5) + L(ν
3
2 ζ, ζStSO(3)),

νζStGL(2) o 1 = ζStSO(5) + L(νζStGL(2), 1).

(iii) Let ζ1, ζ2 ∈ F̂× such that ζ2
i = 1F× , i = 1, 2 (ζ1 6= ζ2)

ν
1
2 ζ1× ν

1
2 ζ2o 1 ' ν

1
2 ζ2× ν

1
2 ζ1o 1 = ν

1
2 ζ1o ζ2StSO(3) + ν

1
2 ζ1o ζ21SO(3) =

ν
1
2 ζ2 o ζ1StSO(3) + ν

1
2 ζ2 o ζ11SO(3)

From sSieg(ν
1
2 ζ1 o ζ2StSO(3)) = ν

1
2 ζ1 × ν

1
2 ζ2 ⊗ 1 + ν

1
2 ζ2 × ν−

1
2 ζ1 ⊗

1 we conclude that ν
1
2 ζ1 o ζ2StSO(3) is a representation of length less

then or equal 2. In the same way we can conclude that all the above

representations are of the length less then or equal 2.

We take a look at the following sequence of the short intertwining

11



operators:

ν
1
2 ζ1 × ν

1
2 ζ2 o 1

A1−→ ν
1
2 ζ1 × ν−

1
2 ζ2 o 1

A2−→ ν−
1
2 ζ2 × ν

1
2 ζ1 o 1

A3−→
ν−

1
2 ζ2 × ν−

1
2 ζ1 o 1

A4−→ ν−
1
2 ζ1 × ν−

1
2 ζ2 o 1

Notice that A2 and A4 in the above sequence are isomorphisms.

Of course, Im(A4 ◦A3 ◦A2 ◦A1) is equal to L(ν
1
2 ζ1, ν

1
2 ζ2, 1). Since A4

is an isomorphism, this implies that ImA3|Im(A2◦A1) = L(ν
1
2 ζ1, ν

1
2 ζ2, 1).

Also, KerA1 = ν
1
2 ζ1oζ2StSO(3), ImA1 = ν

1
2 ζ1oζ21SO(3) and KerA3 =

ν−
1
2 ζ2 o ζ1StSO(3). This leaves us two possibilities:

• KerA3 ∩ ImA2|ImA1 = 0

We see at once that ImA3 is equal to L(ν
1
2 ζ1, ν

1
2 ζ2, 1). But, ImA3 =

ν−
1
2 ζ2oζ11SO(3) also. Obviously, ν

1
2 ζ2oζ11SO(3) is then an irreducible

representation, while Aubert duality implies that ν
1
2 ζ2o ζ1StSO(3) is

also irreducible and is equal to its Langlands quotient.

This gives ν
1
2 ζ1 × ν

1
2 ζ2 o 1 = L(ν

1
2 ζ1, ν

1
2 ζ2, 1) + L(ν

1
2 ζ2, ζ1StSO(3)).

But, the representation L(ν
1
2 ζ1, ζ2StSO(3)) (the Langlands quotient

of ν
1
2 ζ1 o ζ2StSO(3)) is also a composition factor of ν

1
2 ζ1 × ν

1
2 ζ2 o 1,

different from both L(ν
1
2 ζ1, ν

1
2 ζ2, 1) and L(ν

1
2 ζ2, ζ1StSO(3)).

Therefore it follows that:

• KerA3 ∩ ImA2|ImA1 6= 0

Clearly, ν−
1
2 ζ2 o ζ1StSO(3) ∩ ν

1
2 ζ1 o ζ21SO(3) 6= 0.

Since L(ν
1
2 ζ2, ζ1StSO(3)) ↪→ ν−

1
2 ζ2 o ζ1StSO(3), it follows easily that

ν−
1
2 ζ2 o ζ1StSO(3) ∩ ν

1
2 ζ1 o ζ21SO(3) = L(ν

1
2 ζ2, ζ1StSO(3)) and

ν
1
2 ζ1 o ζ21SO(3) = L(ν

1
2 ζ1, ν

1
2 ζ2, 1) + L(ν

1
2 ζ2, ζ1StSO(3)).

Also, since L(ν
1
2 ζ1, ν

1
2 ζ2, 1) ↪→ ν−

1
2 ζ1 × ν−

1
2 ζ2 o 1 and

L(ν
1
2 ζ2, ζ1StSO(3)) ↪→ ν−

1
2 ζ2×ν

1
2 ζ1o1, Frobenius reciprocity implies

smin(L(ν
1
2 ζ1, ν

1
2 ζ2, 1)) ≥ ν−

1
2 ζ1⊗ ν−

1
2 ζ2⊗ 1 + ν−

1
2 ζ2⊗ ν−

1
2 ζ1⊗ 1 and

smin(L(ν
1
2 ζ2, ζ1StSO(3))) ≥ ν−

1
2 ζ2 ⊗ ν

1
2 ζ1 ⊗ 1 + ν

1
2 ζ1 ⊗ ν−

1
2 ζ2 ⊗ 1.

This implies ν
1
2 ζ2 o ζ11SO(3) = L(ν

1
2 ζ1, ν

1
2 ζ2, 1) + L(ν

1
2 ζ1, ζ2StSO(3))

Let σ ≤ ν
1
2 ζ2oζ1StSO(3) such that ν

1
2 ζ2×ν

1
2 ζ1⊗1 = sSieg(σ) (this is

not contained in the Jacquet module of L(ν
1
2 ζ2, ζ1StSO(3))). Clearly,

σ is irreducible and square-integrable, while

ν
1
2 ζ2 o ζ1StSO(3) = L(ν

1
2 ζ2, ζ1StSO(3)) + σ.
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Using Jacquet modules we easily obtain that σ ≤ ν
1
2 ζ1 o ζ2StSO(3),

σ 6= L(ν
1
2 ζ2, ζ1StSO(3)).

This analysis leads to the following:

Proposition 3.6 Let ζ1, ζ2 ∈ F̂× such that ζ2
i = 1F×, i = 1, 2 (ζ1 6= ζ2).

Than the representations ν
1
2 ζ2oζ11SO(3), ν

1
2 ζ2oζ1StSO(3), ν

1
2 ζ1oζ21SO(3)

and ν
1
2 ζ1oζ2StSO(3) are reducible and ν

1
2 ζ1×ν

1
2 ζ2o1 is a representation of

length 4. ν
1
2 ζ1oζ2StSO(3) and ν

1
2 ζ2oζ1StSO(3) have exactly one irreducible

subquotient in common. That subquotient is square-integrable, we denote

it by σ. In R(S) we have:

ν
1
2 ζ1× ν

1
2 ζ2o 1 = ν

1
2 ζ1o ζ2StSO(3) + ν

1
2 ζ1o ζ21SO(3) = ν

1
2 ζ2o ζ1StSO(3) +

ν
1
2 ζ2 o ζ11SO(3)

and

ν
1
2 ζ2 o ζ11SO(3) = L(ν

1
2 ζ1, ζ2StSO(3)) + L(ν

1
2 ζ1, ν

1
2 ζ2, 1),

ν
1
2 ζ2 o ζ1StSO(3) = L(ν

1
2 ζ2, ζ1StSO(3)) + σ,

ν
1
2 ζ1 o ζ21SO(3) = L(ν

1
2 ζ2, ζ1StSO(3)) + L(ν

1
2 ζ1, ν

1
2 ζ2, 1),

ν
1
2 ζ1 o ζ2StSO(3) = L(ν

1
2 ζ1, ζ2StSO(3)) + σ.

(iv) This happens to be the case that can be solved directly, without

using Jacquet modules of SO(5, F ). In R(S) we have: νζ × ζ o 1 =

ν
1
2 ζStGL(2)o 1+ ν

1
2 ζ1GL(2)o 1. From [14], Proposition 6.3. and Corollary

6.4., we get that both ν
1
2 ζStGL(2) o 1 and ν

1
2 ζ1GL(2) o 1 are irreducible.

Proposition 3.7 Let ζ ∈ F̂× such that ζ2 = 1F×. Then the representa-

tions ν
1
2 ζStGL(2) o 1 and ν

1
2 ζ1GL(2) o 1 are irreducible and in R(S) we

have:

νζ × ζ o 1 = ν
1
2 ζStGL(2) o 1 + ν

1
2 ζ1GL(2) o 1

and

ν
1
2 ζStGL(2) o 1 = L(ν

1
2 ζStGL(2), 1),

ν
1
2 ζ1GL(2) o 1 = L(νζ, ζ o 1).

We still haven’t covered all the cases, because we have started from

the representations νsχStGL(2)o1 and νsχoζStSO(3), for s > 0. We have

to see what happens when s = 0 (in the case of the so-called generalized

unitary principal series), i.e., we have to determine composition series of

the representations ν
1
2 χ× ν−

1
2 χo 1 and χ× ν

1
2 ζ o 1.
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First, for χ ∈ F̂× we have:

µ∗(χStGL(2) o 1) = 1⊗ χStGL(2) o 1 + ν
1
2 χ⊗ ν−

1
2 χo 1 +

ν
1
2 χ−1 ⊗ ν

1
2 χo 1 + χStGL(2) ⊗ 1 +

χ−1StGL(2) ⊗ 1 + ν
1
2 χ× ν

1
2 χ−1 ⊗ 1

If χ 6= χ−1 (χ2 6= 1F×), then all the summands in the previous relation

are irreducible, and since χStGL(2) o 1 is an unitary representation and

multiplicity of χStGL(2)⊗1 in sSieg(χStGL(2)o1) is equal to 1, χStGL(2)o1

is irreducible.

Proposition 3.8 Let χ ∈ F̂×, such that χ2 6= 1F×. Then the both repre-

sentations χStGL(2) o 1 and χ1GL(2) o 1 are irreducible. In R(S) we have

ν
1
2 χ×ν−

1
2 χo1 = χStGL(2)o1+χ1GL(2)o1. For Langlands parameters we

have χStGL(2)o 1 = L(χStGL(2)o 1) and χ1GL(2)o 1 = L(ν
1
2 χ, ν

1
2 χ−1, 1).

If χ = χ−1, we just put ζ instead of χ and get ζStGL(2) o 1 ↪→ ν
1
2 ζ ×

ν−
1
2 ζ o 1 = ν

1
2 ζ × ν

1
2 ζ o 1 which has been solved in (i).

Second, again for χ ∈ F̂× we have:

µ∗(χo ζStSO(3)) = 1⊗ χo ζStSO(3) + χ⊗ ζStSO(3) + χ−1 ⊗ ζStSO(3) +

ν
1
2 ζ ⊗ χo 1 + χ× ν

1
2 ζ ⊗ 1 + ν

1
2 ζ × χ−1 ⊗ 1

Let π be an irreducible subquotient of χ o ζStSO(3) such that ν
1
2 ζ ⊗

χ o 1 ≤ s(1)(π). Then ν
1
2 ζ ⊗ χ ⊗ 1 + ν

1
2 ζ ⊗ χ−1 ⊗ 1 ≤ smin(π) and

χ × ν
1
2 ζ ⊗ 1 + ν

1
2 ζ × χ−1 ⊗ 1 ≤ sSieg(π). This implies π ' χ o ζStSO(3)

and χo ζStSO(3) is irreducible.

Proposition 3.9 Let χ ∈ F̂×. Then the both representations χoζStSO(3)

and χ o ζ1SO(3) are irreducible. In R(S) we have χ × ν
1
2 ζ o 1 = χ o

ζStSO(3) + χ o ζ1SO(3). In terms of the Langlands parameters we have

χo ζStSO(3) = L(χo ζStSO(3)) and χo ζ1SO(3) = L(ν
1
2 ζ, χo 1).

4 REPRESENTATIONS WITH SUPPORT IN MAX-

IMAL PARABOLIC SUBGROUPS

First we consider the case of the representations which have cuspidal

support in PSieg.
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Proposition 4.1 Let ρ be an irreducible unitarizable supercuspidal rep-

resentation of GL(2, F ). There is at most one s ≥ 0 such that νsρ o 1

reduces.

(i) If ρ 6= ρ̃ then ρo 1 is irreducible. Also, the representations νsρo 1,

s > 0 are irreducible.

(ii) If ρ = ρ̃ and ρ o 1 reduces (that is the case when the central

character ωρ of ρ is different then 1), all of the representations νsρ o 1,

s > 0 are irreducible.

(iii) If ρ = ρ̃ and ρ o 1 is irreducible (that is the case when ωρ = 1),

then unique s > 0 such that the representation νsρo 1 reduces is equal to
1
2
.

Now we consider the case of the representations which have cuspidal

support in P(1).

Proposition 4.2 Let χ ∈ F̂× and let σ be an irreducible unitarizable

supercuspidal representation of SO(3, F ) ' PGL(2, F ) (observe that σ is

generic). There is at most one s ≥ 0 such that νsχo σ reduces.

(i) If χ 6= χ−1 then χ o σ is irreducible. Also, the representations

νsχo σ are irreducible for s > 0.

(ii) If χ = χ−1, then νsχo σ reduces only for s = 1
2
.
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Department of Mathematics

University of Osijek

31000 Osijek

Croatia

E-mail: imatic@mathos.hr

16


